On the zeros of generalized Bessel polynomials. I

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Generalized Bessel Matrix Polynomials

Abstract.In this paper, the generalized Bessel matrix polynomials are introduced, starting from the hypergeometric matrix function. Integral form, Rodrigues’s formula and generating matrix function are then developed for the generalized Bessel matrix polynomials. These polynomials appear as finite series solutions of second-order matrix differential equations and orthogonality property for the ...

متن کامل

Zeros of Generalized Krawtchouk Polynomials

The zeros of generalized Krawtchouk polynomials are studied. Some interlacing theorems for the zeros are given. A new infinite family of integral zeros is given, and it is conjectured that these comprise most of the non-trivial zeros. The integral zeros for two families of q-Krawtchouk polynomials are classified.

متن کامل

On the zeros of a class of generalized hypergeometric polynomials

We obtain the asymptotic behavior of the zeros of a class of generalized hypergeometric polynomials. For this purpose, we make use of a Mehler–Heine type formula for these polynomials. We illustrate these results with numerical experiments and some figures. 2010 MSC: 33C45, 42C05

متن کامل

Approximate Closed-Form Formulas for the Zeros of the Bessel Polynomials

We find approximate expressions x̃(k, n) and ỹ(k, n) for the real and imaginary parts of the kth zero zk = xk + iyk of the Bessel polynomial yn(x). To obtain these closed-form formulas we use the fact that the points of welldefined curves in the complex plane are limit points of the zeros of the normalized Bessel polynomials. Thus, these zeros are first computed numerically through an implementa...

متن کامل

On the Location of Zeros of Polynomials

then   P z has all the zeros in z t  . In the literature, [1-15], there exist extensions and generalizations of Eneström-Kakeya theorem. Joyal, Labelle and Rahman [9] extended this theorem to polynomials whose coefficients are monotonic but not necessarily non negative and the result was further generalized by Dewan and Bidkham [6] to read as: Theorem B. If   =0 := n j j j P z a z  is a p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae (Proceedings)

سال: 1981

ISSN: 1385-7258

DOI: 10.1016/1385-7258(81)90013-5